Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms

نویسنده

  • Shi Jin
چکیده

Hyperbolic systems often have relaxation terms that give them a partially conservative form and that lead to a long-time behavior governed by reduced systems that are parabolic in nature. In this article it is shown by asymptotic analysis and numerical examples that semidiscrete high resolution methods for hyperbolic conservation laws fail to capture this asymptotic behavior unless the small relaxation rate is resolved by a ne spatial grid. We introduce a modiication of higher order Godunov methods that possesses the correct asymptotic behavior, allowing the use of coarse grids (large cell Peclet numbers). The idea is to build into the numerical scheme the asymptotic balances that lead to this behavior. Numerical experiments on 2 2 systems verify our analysis. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms

We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. ...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Central Differencing Based Numerical Schemes for Hyperbolic Conservation Laws with Relaxation Terms

Many applications involve hyperbolic systems of conservation laws with source terms. The numerical solution of such systems may be challenging, especially when the source terms are stiff. Uniform accuracy with respect to the stiffness parameter is a highly desirable property but it is, in general, very difficult to achieve using underresolved discretizations. For such problems we develop differ...

متن کامل

A discontinuous Galerkin method with Hancock-type time integration for hyperbolic systems with stiff relaxation source terms

A new discretization method for hyperbolic systems with stiff relaxation source terms (hyperbolic-relaxation equations) is introduced. The method is based on Huynh’s “upwind moment scheme” for hyperbolic conservation laws with implicit treatment of the source term. A Von Neumann analysis shows superiority in both stability and accuracy of the resulting fully discrete scheme over the method-of-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996